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Abstract: An extensive investigation of more than 90 landslides affecting a small river basin in Central
Italy was performed by combining field surveys and remote sensing techniques. We thus defined the
geomorphological setting of slope instability processes. Basic information, such as landslides mapping
and landslides type definition, have been acquired thanks to geomorphological field investigations
and multi-temporal aerial photos interpretation, while satellite SAR archive data (acquired by ERS
and Envisat from 1992 to 2010) have been analyzed by means of A-DInSAR (Advanced Differential
Interferometric Synthetic Aperture Radar) techniques to evaluate landslides past displacements
patterns. Multi-temporal assessment of landslides state of activity has been performed basing
on geomorphological evidence criteria and past ground displacement measurements obtained by
A-DInSAR. This step has been performed by means of an activity matrix derived from information
achieved thanks to double orbital geometry. Thanks to this approach we also achieved more detailed
knowledge about the landslides kinematics in time and space.

Keywords: landslide; state of activity; synthetic aperture radar interferometry; Persistent Scatterers;
ERS; Envisat

1. Introduction

In the last 40 years, several techniques for mapping and assessing slope movements have been
developed, thus allowing for most reliable and fast investigation [1–4]. Geomorphological landslide
mapping is a complex problem as it is affected by several factors, such as the availability of the
diagnostic data, the scale of the analyses and the final objective of the performed investigation [2,5–8].
A suitable cartographic representation of landslide bodies is the first step in addressing such a hazard
for a given area. Depending on the final purpose, several types of landslide mapping can be performed,
such as landslide inventory, landslide typology and landslide state of activity maps. The standard
approach in landslide mapping procedure is mainly based on the expertise of the surveyor, therefore
is affected by uncertainties and sometime subjective information.

If a landslide inventory map represents a snapshot of the territory at a given moment [8],
the state of activity map requires assumptions also about the temporal evolution of the given processes.
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Therefore, quantitative information about displacements that have occurred represents a valuable
source of information for landslide state of activity assessments.

Recently, the contribution of remote sensing techniques to natural hazards risk reduction has
dramatically increased. Satellite InSAR, in particular, has proven to be a reliable methodology for
landslide investigation [9–14].

Specifically, Satellite Advanced Differential Synthetic Aperture Radar Interferometry (A-DInSAR),
namely Persistent Scatterers Interferometry (PSI), Small Baseline Subset (SBAS) and similar
techniques [15–18], has greatly increased the range of landslide research and monitoring applications
since their development in the early 2000s. Because of the increased practical fruition of the results
provided by such techniques, A-DInSAR is becoming a reality today not only for scientific studies but
also by professional applications [12,19]. One of the key features of A-DInSAR is the ability to provide
quantitative results about past ground displacements. At present, such results are not achievable with
comparable accuracy using any other technique.

However, as noted by other authors [12], InSAR data need to be integrated with other investigation
techniques and prior information to take advantage of this tool. Field surveys and interpretation of
aerial photos and other remote sensing data (both ground based and satellite based) are useful not
only to properly interpret InSAR results but also to attain basic information about the investigated
area to design suitable InSAR analyses [20–23].

In this paper, we integrate the above-mentioned traditional and recent (in situ and remote sensing
based) techniques in order to infer quantitative data to be applied to the landslide risk mitigation
strategies in an area intensively affected by such a type of risk. The study area is located in central
Italy, in the eastern sector of the Apennine chain. It is illustrative of similar worldwide geological and
geomorphological contexts, and its specific setting is described in the next section.

2. The Study Area

The investigated basin (approximately 20 km2) is located in the Abruzzi region (Italy), near the
villages of Casacanditella, Filetto and San Martino sulla Marrucina (Figure 1). The area is situated in
the Periadriatic zone facing the Maiella relief (approximately 20 km from the Adriatic coast). It is a
typically hilly area with N-S-trending valley floors, incised by the Dendalo and Vesola San Martino
streams, with absolute heights ranging between approximately 460 m above sea level (a.s.l.) on
the surrounding hills and 150 m a.s.l. on the stream floor, thus generating, on average, moderate
slope energy.
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2.1. Geological–Structural Characteristics

From a structural standpoint, the investigated area lies along the outer margin of the Apennine
chain [24], slightly west of the Ortona-Roccamonfina line [25]. This roughly NNE–SSW-trending
alignment is the zone of junction between the two large arcs forming the Apennine thrust-and-fold
belt system [25–27]. The chain thus consists of wide E-dipping thrust sheets and thrusting calcareous
lithotypes over arenaceous-clayey deposits [28,29].

In the investigated area, the bedrock is composed of a thick marine succession of the upper
Pliocene-Pleistocene pro-parte (p.p.), known in the literature as the Mutignano Formation [24,30]. In its
lower part, the succession presents grey-blue marly clays, often interbedded with sands that become
increasingly frequent and thick moving upwards. In its upper part, it contains grey and ochre silty
sands, with pelitic levels and occasional arenaceous and conglomeratic intercalations.

Fluvial and lagoonal deposits of Pleistocene p.p.-.upper Pleistocene p.p. age occur along
the top portions of reliefs and near morphological terraces [31–33]. These deposits embed
polygenic conglomerates in a sandy-silty groundmass, with local sandy layers and clayey and
peaty intercalations.

Extensive Holocene fluvial and detrital-colluvial deposits are observed along fluvial incisions and
slopes [31,32]. These terrains consist of clayey-silty and sandy-silty deposits, frequently evolving into
gravels and pebbles or cobbles.

Structurally, the investigated area has numerous high-angle normal and strike-slip faults [24,28,30],
clearly dislocating the bedrock lithotypes. These faults, covering a small surface area, have throws
of meters to tens of meters. The primary fault systems have approximately N–S, E–W, SW–NE,
SE–NW and SSE–NNW directions [24,34], although non-systematic faults with different orientations
are also found. The above described tectonic features progressively downthrow the Mutignano
Formation towards the main valley floors. Finally, the formation has a generally monoclinal and gently
NE-dipping pattern, and its strata have an inclination of 5◦ to 15◦ (Figure 2).

2.2. Geomorphological Characteristics

The geomorphology of the Periadriatic sector of Abruzzi is strongly controlled by its
local geological–structural setting and by the recent evolution of the Apennine chain [31,35].
The above-mentioned tectonic features control the configuration of the leading drainage lines and
morphological ridges of the investigated area [33,36]. In particular, the shaping of the reliefs
and the geomorphological evolution of this sector of the region are largely dependent on slope
movements [35,37,38].

The investigated area is affected by several landslides and slope deformations [38], most of them
reaching the Dendalo stream valley floor. These processes originate from various geological and
geomorphological factors (i.e., tectonic features, soil characteristics, surface water dynamics, land uses,
and seismicity). In this scenario, slope instabilities generally arise along tectonic lines and in areas
affected by strong surface erosion [37,39]. The distribution and features of these landslides are directly
related to the geology of the area and to its high-angle tectonic lines [39]. Indeed, structural lineaments
represent elements of weakness along which the landslide can move preferentially. Conversely, the
pattern of the rupture surface in the intermediate-low sectors of the landslide bodies depends on
the setting layout of the bedrock. Furthermore, landslide typologies are of course influenced by
outcropping terms. Because of the presence of different types of soils, primarily characterized by
the presence of silty sands and pelitic terms generally belonging to the Mutignano Formation, the
typical instability processes detected in the study area can be classified as slides, earth-flows and
complex landslides.
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3. Landslides Mapping

3.1. Methods

A detailed mapping of landslides was performed using geomorphological field surveys and
the interpretation of multi-temporal aerial photos. The primary objective was to properly define a
landslide inventory for the study area, characterizing each detected phenomenon in terms of landslide
typology and providing a preliminary indication about the state of activity [40].

The landslides mapping of the whole study area has been carried out starting from the analysis of
data available in literature. In particular, during the early stages of the study, regional and national
maps of landslides, available for the whole Italian country (i.e., Piano di Assetto Idrogeologico - PAI -
database and Inventario dei Fenomeni Franosi in Italia - IFFI - database) [41,42], have been acquired.
Starting from such information, a detailed local-scale mapping has been obtained by specific field
surveys performed between October 2010 and June 2013, on the whole study area. These surveys
have been carried out to define for all landslide phenomena the main morphological elements and
information about the landslide areas and the related state of activity.

At this regards, an important contribution has been provided by the analysis of multi-temporal
datasets of aerial photos, useful to define the spatial and temporal evolution of the slopes. Specifically,
the following four datasets were used: 1954 (Average Scale (A.S.) 1:33,000), 1987 (A.S. 1:33,000), 2002
(A.S. 1:13,000), and 2007 (A.S. 1:5000). Analyses of stereoscopic pairs of images allowed for the mapping
of the main landslide bodies as well as for the identification of geomorphological and hydrographical
features that are also related to the temporal morpho-evolution of the active processes in the area.

3.2. Results

The analysis of aerial photos from 1954 to 2002 combined with field surveys allowed us to identify
and map 97 landslides within the study area. Landslides affect most of this portion of the Dendalo
stream basin and were classified as slides (15 processes), earth-flows (41 processes) and complex mass
movements (41 processes) [43] (Figure 3a).

In general, the multi-temporal aerial photos analyses showed the presence of current slope
instability phenomena since 1954, indicating that the detected landslides are pre-existing and,
in many cases, quite old. These phenomena could be placed into the context of the complex geological,
structural and geomorphological conditions of the area, and they are not directly connected with
human activities in the area in recent decades.

The landslide deposits are related to the mobilization of the pelitic and psammitic lithologies of
the Mutignano Formation, especially on the middle and lower portions of the slopes. In the mainly
pelitic areas, the geomorphological elements related to the largest landslide phenomena, such as
niches, scarps and counterslopes, are highly altered and degraded and often modified by the strong
anthropic activity in the area. Landslide areas range from a few hundred square meters to several
square kilometers. Complex landslides are the widest and deepest phenomena, with failure surfaces
often in the range of several tens of meters. Conversely, the earthflows are smaller and less deep
(mean thickness of several meters).

Displacement mechanisms are well identified using landslide crowns patterns (usually evident
even if partially affected by deterioration), the presence of clear counterslopes and landslide terraces.
The detected phenomena are primarily characterised as complex, wide landslide systems, in which it
is not always possible to identify and bound individual instability phenomena. Finally, local processes
related to viscous deformation of shallow material (creep and/or solifluction) affect the steeper slopes
or portions of slopes surrounding the landslide areas. Most of the landslides show moderate signs of
reactivation, thus demonstrating limited evolution rates.

Based on these investigation methods, the state of activity appears to be generally dormant,
with a return time of a few years to some tens of years. The stabilized phenomena are represented
by very extensive landslide movements along the Dendalo stream valley floor. Using field surveys
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and multi-temporal aerial photos, we could detect some active or suspended phenomena, represented
by some fairly shallow landslides and by the system of slides and complex slides occurring SE of
the village of San Martino sulla Marrucina (Figure 3b). Their stage of activity is generally advanced
or senile, exhausted only for the inactive and more ancient phenomena. According to [43], we can
describe the distribution of activity of the landslides as mostly “retrogressive” and rarely it may be
characterized by a complex combined movement, “advancing” and “retrogressive” at the same time.
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4. A-DInSAR Analyses

Information about the temporal and spatial evolution of landslide processes (landslide mapping,
spatial evolution, state of activity) attained using multi-temporal aerial photos represents the first stage
of a large-scale slope instability investigation [44–48].

However, this widely used methodology has several limitations: (i) it is strongly discontinuous
in time (the availability of data depends on the presence of archived aerial photos acquired in the
same area over time); (ii) as in our case study, datasets are often heterogeneous in terms of spatial
scales as well as film type (the availability of black and white and color photos); (iii) the definition of
the states of activity of several processes are directly related to the presence of geomorphic elements
(this aspect is crucial if anthropic activities such as agriculture occur in given area); (iv) the identification
of diagnostic elements is strongly affected by operator subjectivity; and (v) the results are only partially
quantitative and not highly accurate [4].

To define in detail the deformational behaviors of slopes and improve the knowledge of the
spatial and temporal evolution of landslide in the study area, we performed A-DInSAR analyses.
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4.1. Basic Principles and Applications

Over the last two decades, classical DInSAR analyses, performed by coupling SAR images
to generate differential interferograms have been largely adopted as a tool to investigate ground
deformation processes.

DInSAR has proven to be a very useful methodology to analyze several ground deformation
phenomena, such as coseismic and post seismic deformations [49,50], volcanic deformation
processes [51,52], and ice and glacier dynamics [53,54]. Landslide processes have also been studied
using the DInSAR technique [14,55–58]. However, several limitations affect DInSAR: artifacts
due to the atmosphere phase screen (APS), the presence of residual topographic contributions,
and decorrelation effects (both temporal and geometrical), which can prevent the observation of
displacement information or reduce the accuracy of the results.

Advanced DInSAR (A-DInSAR) techniques are an effective solution to reduce some of
the limitations of standard DInSAR analysis [10,15,16,59–64]. All A-DInSAR approaches are
basically characterized by the exploitation of large, multi-temporal data-stacks to generate several
interferograms, thus achieving higher redundancy of interferometric results. One of the most
known approaches is the so-called Persistent Scatterers Interferometry (PSI), which is based on the
information achieved by pixels of the SAR images characterized by high coherence over long time
intervals [10,15,60]. Generally, constructed structures, such as buildings, bridges, dams, railways, or
pylons, or natural elements, such as outcropping rocks or homogeneous terrain areas, can represent
good Persistent Scatterers (PS).

Unlike the SBAS approach [16], standard PSI is based on the generation of interferograms
using a common master SAR image. Point-like scattering pixels remain coherent for the entire
observation period, and they do not suffer from temporal and geometrical decorrelation effects, thus
also allowing the generation of interferograms using image pairs characterized by long temporal and
normal baselines. Using this principle, almost all images that constitute a given stack can be used to
perform multi-temporal A-DInSAR analyses. The latter point is crucial for the investigation of past
displacements because, in this case, information can be attained only from archived SAR data, and it is
fundamental to not waste the possible contributions of any SAR acquisition. Every image contributing
to an A-DInSAR analysis represents “one sample” in a given time series of displacement. For some
deformation phenomena, such as landslides, it is very important to attain a time series as detailed
as possible.

However, it is worth noting that A-DInSAR techniques are also affected by some limitations.
First, because only objects which are good “radar reflectors” can be analyzed, they have an inability to
attain information over highly vegetated areas. This aspect is not secondary as landslides often involve
non-urban areas, and, if any corner reflector had been installed, there is no way to overcome this
issue for past-oriented A-DInSAR analyses. Moreover, because of the cyclic nature of the phase signal,
it is not possible to observe very rapid displacements [65]. Furthermore, satellite SAR interferometry
is affected by the capability of observing displacements only along the so-called Line of Sight (LOS),
which is the sensor-target direction [66].

4.2. A-DInSAR Data Processing

For the present case study, we performed A-DInSAR analyses of past displacements using four
SAR data-stacks from the ESA archive ranging in the time span 1992 to 2010. Specifically, ERS1/2
data were selected for the 1992–2001 period, and Envisat data were selected for the 2002–2010 period.
Large-scale analyses have been performed on a portion of the SAR images frame large approximately
11 × 11 km2, thus covering an area larger than the Dendalo basin. For both periods, we analyzed both
ascending and descending datasets. In this case, because of the N–S oriented basin, we had to contend
with the east and west aspects of the slopes; thus, to properly observe the possible displacements on
all slopes, we had to select datasets acquired in ascending and descending orbital geometries (Table 1).
Moreover, a Digital Elevation Model having 30 m resolution was used to compute the differential
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interferograms (i.e., to subtract the topographic phase component from the interferometric phase) and
to geocode the PS results.

Table 1. Archived data stacks selected for the A-DInSAR analyses.

Satellite Data-Stack ERS Descending ERS Ascending Envisat Descending Envisat Ascending

Images (num.) 71 47 47 54

Period covered June 1992–
January 2001

June 1995–
December 2000

November 2002–
September 2009

February 2003–
September 2010

Master image 26 June 1997 16 June 1998 18 August 2005 18 October 2006

We performed the interferometric analyses using Sarproz software [64], which is specifically
developed for multi-image InSAR analyses, such as PS [10] and QuasiPS (QPS) [17].

For each dataset, all images have been related to a single master image; more specifically,
the selected masters are reported in Table 1. The master image was selected by considering the
normal and temporal baselines, thus trying to reduce the decorrelation effects. After all images were
co-registered to the master image, the reflectivity map (i.e., the multi-temporal amplitude value for each
pixel) and the amplitude stability index (ASI, i.e., the coefficient of variation of the amplitude) were
generated and used as quality estimator for the selection of PS candidates (PSC) in the PSI procedure.

The Methodology Adopted

The multi-image interferometric analysis has been performed with a combined technique, based
on PS [10] and QPS [17] integration. In particular, this hybrid approach is performed by taking
advantage of two different image connection graphs used for the different methodologies.

1. In a first step, as is standard for the PS method, the so-called “star” graph has been used
(Figure 4a), thus connecting all slave images to a single master image to generate interferograms.

2. Moreover, by using the QPS method [17], we also connected the same images using the Minimum
Spanning Tree (MST), which is a weighted graph to connect images to maximize spatial coherence
(Figure 4b).

The connection based on the star graph ensures a temporal continuity and improves the capability
of unwrapping the phase signal to generate reliable displacement time series, while interferograms
obtained from the images connected in this way may provide wider information if compared with
those computed starting from the star graph because of the higher number of coherent scatterers.

The interferometric phase signal, ∆φint, is the result of multiple contributions. For the sake of
simplicity, we here indicate only the following terms:

∆φint = ∆φtopo + ∆φdispl + ∆φatmo + ∆φnoise (1)

where ∆φtopo is the contribution of the residual topographic height (H) after DEM subtraction from
interferograms, ∆φdispl is the searched displacement (D) information, ∆φatmo is the disturbance
caused by the Atmospheric Phase Screen (APS), and ∆φnoise is the non-removable phase disturbance.
To properly estimate the displacement (D) and the topographic height (H) values, we selected a set
of PS candidates (PSC) using an ASI threshold to choose very stable pixels in terms of the amplitude
signal over the analyzed period.

All PSCs were then connected to create a redundant spatial network, and H and D were estimated
along the connections starting from a linear model to infer unknown displacement. Once we found H
and D values for every connection, those values were integrated over the PSCs to estimate the APSs
(one for every image of the dataset) starting from the residual phase components. Once the APSs have
been attained, a second estimation is performed on a much larger set of points, which will represent
the final step of the PSs after a final temporal coherence threshold to select the final results.
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Figure 4. Graphs used to connect images relating to temporal baseline (X axis) and normal baseline
(Y axis). Every dot represents an image, while every line represents an interferogram. Colors
from blue to red show increasing value of spatial coherence. It is worth noticing different values
of spatial coherence achievable from: “star” graph (A); and Minimum Spanning Tree (MST) graph (B).
In particular, minimum values are considerable higher for MST graph. The example refers to the
Envisat descending dataset.

4.3. A-DInSAR Results

In Figure 5, the A-DInSAR results are related to the ERS and Envisat periods. PSs are shown as
colored dots. Colors are related to displacement rates (mm/year) along the LOS.

Dots from yellow to red show displacements away from the satellite, and dots from light blue
to dark blue indicate displacements towards the satellite. Green dots represent points not affected
by displacement in the investigated period. A-DInSAR results have been computed with respect to
a reference point (white star in Figure 5) assumed as stable and located outside of the study area.
Red polygons indicate landslide bodies mapped through the interpretation of aerial photos and
field surveys.

The A-DInSAR results cover 27 landslides of the total of 97 affecting the study area (less than 30%
of the number of phenomena). However, it is worth noticing that these 27 landslides are the largest
ones on the overall study area, thus a large portion of the basin affected by instability processes has
been investigated thanks to the presence of sufficient PSs within the landslide bodies. The landslides
without PS are mainly represented by small and very small earthflows located in secondary valleys,
where no buildings or other structures as potential good radar targets are present.
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For the sake of completeness, we want to focus on some peculiar features related to the spatial
distribution of the A-DInSAR results.

First, the main urbanized areas are settled on the quite flat hilltops, offering many good scatterers
as potential PSs. Starting from interpretation of aerial photos and field surveys, we derived that almost
all landslide processes seemed not to affect such villages. This information, indeed, is also confirmed
by the A-DInSAR results, which substantially show stable PSs over the urbanized areas (see ellipses A,
B and C in Figure 5). Moving down from hilltops, the slopes degrade gently to the streams. Especially
on the western slopes, many PSs showing displacement information are present in both the ascending
and descending geometries.

Remote Sens. 2017, 9, 267  10 of 20 

 

For the sake of completeness, we want to focus on some peculiar features related to the spatial 
distribution of the A-DInSAR results. 

First, the main urbanized areas are settled on the quite flat hilltops, offering many good 
scatterers as potential PSs. Starting from interpretation of aerial photos and field surveys, we derived 
that almost all landslide processes seemed not to affect such villages. This information, indeed, is also 
confirmed by the A-DInSAR results, which substantially show stable PSs over the urbanized areas 
(see ellipses A, B and C in Figure 5). Moving down from hilltops, the slopes degrade gently to the 
streams. Especially on the western slopes, many PSs showing displacement information are present 
in both the ascending and descending geometries. 

 
Figure 5. A-DInSAR results: (a) ERS ascending; (b) ERS descending; (c) Envisat asc; and (d) Envisat 
desc. PSs are presented as colored dots. Colors from yellow to red state displacements away from the 
satellite, while dots from light blue to dark blue state displacements toward the satellite. Values are 
expressed in millimeter/year. The white star indicates the location of the reference point. Red 
polygons indicate landslide bodies mapped thanks to aerial photos interpretation and field surveys. 
A, B and C ellipses indicate urbanized areas. D ellipse indicates an area where no PSs have been 
detected because of absence of good scatterers. E area indicates the area affected by strong horizontal 
displacements discussed in Section 4.4. 

Figure 5. A-DInSAR results: (a) ERS ascending; (b) ERS descending; (c) Envisat asc; and (d) Envisat
desc. PSs are presented as colored dots. Colors from yellow to red state displacements away from the
satellite, while dots from light blue to dark blue state displacements toward the satellite. Values are
expressed in millimeter/year. The white star indicates the location of the reference point. Red polygons
indicate landslide bodies mapped thanks to aerial photos interpretation and field surveys. A, B and C
ellipses indicate urbanized areas. D ellipse indicates an area where no PSs have been detected because
of absence of good scatterers. E area indicates the area affected by strong horizontal displacements
discussed in Section 4.4.
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State of Activity

Thanks to the availability of the multi-temporal archive data (in the present work, both aerial
photos and satellite SAR images), the evolution of the state of activity of the detected landslides has
been assessed. As stated above (Section 3.2), starting from the analyses of the airborne optical images
and field surveys, a given state of activity has been assumed for each landslide (Figure 3) based on
geomorphological criteria. Several field surveys have been performed in different years to evaluate
the state of activity, and very similar results were attained in 2010, 2011 and 2012, suggesting a very
slow displacement pattern for landslides characterized as “dormant”. Furthermore, using the ERS and
Envisat A-DInSAR results, which provided quantitative data (i.e., the detection of targets affected by
displacements), the landslide state of activity for the two analyzed periods has been assessed.

In this study, we present an approach based on the observation of double orbital geometries
to assess the period of activity for both the ERS (1992–2001) and Envisat (2003–2010) datasets by
considering the deformation rates observed by A-DInSAR. Several deformation rate thresholds
to define whether a landslide process is reactivated have been chosen by many authors [4,67–71].
As a general rule for this case study, only PSs characterized by velocities greater than 2 mm/year have
been selected as active period markers. In Figure 6 the basic operating principle of the proposed method
is explained. A quite similar approach has been used by Cigna et al. [4] to assess the reactivation
and state of activity of landslides comparing different PSI datasets. The primary difference here is
that the input data are not differentiated in time (e.g., ERS and Envisat), but they are contemporary
(e.g., both ERS and Envisat) and belonging to different orbital acquisition geometries (i.e., ascending
and descending).
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Figure 6. State of activity matrix based on combination of double orbital observation geometries
(ascending and descending).

Because landslides in the herein studied basin are located on both west and east facing slopes,
even if PS data are available for both dataset results, displacements are sometimes visible in only
one of them because of the direction of the LOS. Therefore, the consideration of both geometries
allows the detection of displacements that might go unseen using only one geometric condition.
The state of activity matrix is quite preventive, and thus the detection of unstable PSs, even in only one
geometry, is enough to assess the related landslide as “active” in that period. With the same logic, the
detection of stable PSs in only one geometry is not sufficient to consider the landslide as “inactive” in
the considered period. Moreover, the inactivity is considered only when the presence of stable PSs is
confirmed by both geometries. In Figure 7, the results from the activity matrix application are shown.
For both the ERS and Envisat periods, green polygons define landslides characterized by the presence
of stable PSs, whereas red polygons identify the presence of unstable PSs. Empty polygons identify
landslides with missing or insufficient PSs.

After the comparison of Figure 7c,f, we can assert that the state of activities of the landslides
remains roughly similar in both the analyzed time intervals (1992–2001 for ERS and 2001–2010 for
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Envisat). It is worth noting that two little earthflows and some little complex east-facing landslides in
the central part of the study area are present in the Envisat time interval.

The A-DInSAR results were also useful in defining spatial evolution in time of observed processes.
In Figure 8 an example, representative of the interpretation that has been performed for several
individual landslides is shown: a large slide, belonging to a more generalized slope deformation
phenomenon experienced a gradual retrogression, detected by PSs showing displacements from 1992
(the beginning of the period covered by the ERS data) to 2003 (the beginning of the Envisat observation
period). This outcome (observed on results from different datasets) is a confirmation of the role played
by A-DInSAR in the slope dynamics investigation. The detection and quantitative measurement of past
displacements represent an opportunity to overcome the limitations of standard investigation methods,
which are usually based on the identification of geomorphological effects, not always easily observable.
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Figure 7. Results from the activity matrix: (a, b, c) ERS (1992-2001) data and (d, e, f) Envisat (2003-2010)
data. Green polygons identify presence of stable PSs within the mapped landslide; red polygons
identify presence of unstable PSs; empty polygons show missing or insufficient PSs. The state of
activity results (shown in c, and f) are derived from both orbital geometries combination. Color codes
are the same used for the state of activity matrix in Figure 6.
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Figure 8. Example of crown retrogression for a large slide in the northwestern part of the study area:
(A) ERS (ascending and descending) results (1992–2001); and (B) Envisat (ascending and descending)
results (2003–2010). The example shows progressive evolution of the expansion phenomenon over
time. The red dashed line represents the gradual retrogression.

4.4. Landslides Type of Movement

The combination of results achieved by ascending and descending datasets also allowed to better
define the type of movement of the investigated landslides. At this regards, it is interesting to observe
an example where an area is characterized by PSs of different orbital geometries which show different
values or direction of displacement. More in detail, a small area very near to the Dendalo stream
(ellipse E in Figure 5), is interested by results from the ascending dataset showing movements away
from the satellite (generally evaluated as a “subsidence-like process”), whereas the descending results
show movements towards the satellite (generally considered as an “uplift-like process”). Moreover,
such behavior is observed in both the ERS and Envisat datasets, thus in different periods.

The combination of the double-geometric datasets allowed the derivation of the vertical and
horizontal (E-W) components of the movement [72]. The area, in fact, is on a very gentle slope
(from 2◦ to 7◦) that marks the foot of a large landslide composed of several coalescent bodies.
By considering the slope aspect, oriented nearly east, it was possible to use these results to interpret
real local displacements in terms of both orientation and magnitude (Figure 9).

The results clearly highlight the overall slope deformation behavior, primarily characterized
by horizontal displacements, especially near to the landslide foot, as typical for this type of earth
slide. Moreover, the portion of the landslide affected by slightly stronger vertical components is
located very near to the crown of the lowest landslide body, during both the ERS and Envisat periods.
In addition, this effect is congruent with the types of movement (especially in terms of orientation of
displacements) affecting this landslide portion.

It is worth noticing that, as is clear in the example above, the information related to the different
orientation of displacement vectors along the slope (Figure 9) help to infer the characteristics of the
sliding surface. Furthermore, differences in space of such displacements can be directly related to the
presence of secondary sliding surfaces. In this way, A-DInSAR revealed to be a useful tool to confirm
or adjust the landslides mapping obtained by traditional techniques.
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Figure 9. Section of an investigated landslide characterized by strong horizontal component:
(a, b) Ascending and descending PS results related to ERS and Envisat datasets, respectively.
The yellow line A-A’ identifies the landslide section track drawn beside for: ERS (c); and Envisat
(d) datasets. Colored vectors represent displacements along the slope taking into account vertical and
horizontal components derived by combining ascending and descending results. (e) Pylon affected by
instability near the landslide foot. (f) Ascending and descending time series of displacement related to
PSs used to derive the indicated displacement vector for the Envisat period.

5. Discussion

A-DInSAR has revealed to be an excellent support to the understanding of the landslides processes
in the Dendalo basin. Most of these processes have proven to be suitable for being studied by selected
techniques also because their typical velocity of deformation is not too high to be observed by satellite
A-DInSAR. However, using these results, we can deduce some other general considerations less related
to the present case study. A general look at the results of the entire study area (Figure 5) reveals
more detailed A-DInSAR information attained for the east-facing slopes than for the opposite slopes.
As stated by several authors [4,20,21,66,73,74], several factors can affect the quality of A-DInSAR
results for a given area. These factors are related to the SAR system features and the geomorphological
local conditions [21]. In the context of ground deformation phenomena, this point is crucial for
landslides characterized by various directions of movement (vertical and horizontal) and variable
slope orientation. The use of double geometric investigation (ascending and descending orbits)
was fundamental for facing with both west- and east-facing slopes. As deformation trends of the
investigated processes are extremely slow or very slow [43], a state of activity definition based only
on geomorphological features is often not easy. However, slow displacements typical of post-failure
residual deformation are most likely best observed by A-DInSAR [66], which allow observing and
quantitatively measuring past displacements using archived SAR data. The application of the state of
activity matrix (Figure 6) based on both ascending and descending contemporary datasets allowed
for a better definition of the state of activity during the investigated periods (Figure 7), i.e., 1992–2010.
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The state of activity matrix provided more objective information about the landslide state of activity
than those showed in Figure 3b. A higher number of landslides were revealed as “active” by A-DInSAR
results (Figure 7) than information attained using geomorphological data (Figure 4). The state of activity
derived using traditional mapping techniques represents an information of a given condition limited
at a well-defined moment (i.e., when the field survey takes place, or when the aerial photos are taken),
while, the A-DInSAR investigation allows the observation of several processes over a much longer
time interval. Moreover, it is possible to assess the state of activity condition starting from quantitative
data related to the process itself (i.e., displacements measured with millimeter accuracy), not linked
with observable, subjective effects on the ground. It is worth remembering that the activity matrix
presented here is based on double and independent dataset results for each period (ascending and
descending orbital geometries), thus allowing a more reliable outcome. Furthermore, it is worth
noticing that the topographical effects related to steepness and slope orientation (able to cause radar
distortions on the images used) are not very strong in the present case study. However, the results
are insufficient for analyzing all of the landslide processes. In the present study, the lack of PSs in
some areas is primarily linked to the local absence of targets characterized by good radar scattering
behavior. In a strongly vegetated area, such as this one, it is evident that the presence of good scatters
affects the A-DInSAR results more than any other radar or geomorphological parameter. As stated
by Hanssen [75], A-DInSAR is an “opportunistic” technique; thus, when such a methodology is
used to study non-urban areas (which is a very common and likely scenario for areas affected by
landslide processes), the role played by potential good scatterers is fundamental. Moreover, it is
very important to have available enough good targets in the area in order to also achieve a sufficient
number of homogeneously distributed PSs over the landslide bodies under investigation. An example
of detection without PSs is visible in the D ellipse in Figure 5, where no PSs are detected because no
good scatterers are present. Consequently, several landslides that were recognized as active by the
interpretation of multi-temporal aerial photos and geomorphologic field surveys have unfortunately
not had their past displacements investigated by A-DInSAR data.

Finally, we want to stress that a deeper investigation on SAR images is sometimes required to
analyze and better interpret the interferometric results, and sometimes this may be attained only by
manually exploring time series of every measurement point and, when necessary, processing them
with specific parameters.

6. Conclusions

Detailed remote sensing analyses, together with geomorphological field surveys, have been
performed to extensively characterize landslide processes severely affecting a portion of the Dendalo
stream basin approximately 20 km2 large. The interpretation of multi-temporal aerial photos allowed
the definition of the spatial and temporal evolution of the instability processes over the last five decades.
Analyses of geomorphological features represented the first step towards attaining a basic knowledge
of the number, typology, extension and mapping of these phenomena. Then, A-DInSAR analyses
based on a mixed PSI/QPSI technique allowed substantially improving the information useful for
landslide mapping. The SAR data from the ESA archive have been analyzed to extract information
related to past displacements. We analyzed almost 220 SAR images divided into four datasets covering
approximately 18 years of deformational history of the investigated area. Every SAR dataset was
subject to an independent A-DInSAR processing; hence, the congruency of A-DInSAR results over
same areas can be considered more robust and reliable.

More than 27 landslides covering a large portion of the basin have been successfully investigated
using A-DInSAR. Using the ascending and descending datasets for the ERS (1992–2001) and Envisat
(2003–2010) periods enabled the observation of the deformational processes affecting both the East and
West facing slopes. A landslide activity matrix based on A-DInSAR results has been adopted to assess
the past activity of the investigated landslides and then compared with the state of activity assessment
made by standard geomorphological analyses. Moreover, by the combination of Ascending and
Descending orbital geometries, the definition of the landslide kinematics characterized by the presence
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of sufficient scatterers was possible. Finally, it is worth noticing that the combination of different
observation geometries avoided the misleading interpretation of some processes characterized by
ambiguous geomorphological features.

Based on what above, we can state that the investigated basin is characterized by more than
90 slope deformation phenomena. However, it is worth noting that according to our results the most
vulnerable areas, mainly represented by urban settlements, located on the hilltops, can be considered
not affected by deformation during the analyzed periods. In the underlying slopes, mainly facing
E-W, different types of slope movements (earth-flows, slides and complex landslides) characterized by
single or coalescent bodies and have been recorded. The related state of activity has been distinguished
in active, inactive and undefined; among the active ones, detected velocity is up to 20 mm/year.
The more active slope process is classified as roto-translational slide. It shows a sliding surface some
tens of meters deep and a continuous horizontal deformation component in the lower part of the slope
cumulating more than 30 cm in 18 years in the most active portion.

The methodological approach, successfully tested in the study area, can effectively extended
to many other worldwide areas characterized by similar geological and geomorphological setting:
outcropping of fine-grained jointed formations arranged in gentle slopes continuously cut by a
dense hydrographic network and affected by slow movement such as slides, earth-flows and
complex landslides.

To conclude, the A-DInSAR analyses and in particular PSI has proved to be effective for mapping
and analyzing the landslide deformation patterns. Nowadays, PSI technique will experience a major
development thanks to the Sentinel-1 (ESA) high-quality data, which will increase considerably the
deformation monitoring potential. The large spatial coverage (swath of 250 km) is indeed very useful
for study wide-areas, and thanks to the shorter temporal revisit time (six days, thanks to the double
platform Sentinel 1A and 1B), Sentinel-1 data allow an improvement of the coherence, reducing the
temporal decorrelation.
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